The Fluorination of Gaseous Haloethylenes*1

Shunji NAGASE, Takashi ABE and Hajime BABA

Government Industrial Research Institute, Nagoya, Kita-ku, Nagoya

(Received July 1, 1966)

An earlier paper of this series described the electrochemical fluorination of ethylene, which was shown to be fluorinated without any significant polymerization or fragmentation.13 The present paper will give the results of the work extended to the electrochemical fluorination of gaseous halogenated ethylenes, including fluoroethylene, chloroethylene, 1, 1-difluoroethylene, chlorotrifluoroethylene, and tetrafluoroethylene.

So far, there has been no detailed report on the electrochemical fluorination of gaseous haloolefins.*2 Under controlled conditions, these gases were found to be fluorinated smoothly, giving various kinds of saturated fluorinated products in a reasonable total yield. The general features of the reaction can be explained upon the assumption that the fluorination proceeds by a freeradical mechanism.1)

The reaction conditions for each sample are shown in Table 1, while the results obtained are presented in Tables 2, 3, 4, 5 and 6. The effects of the operating conditions on the product distribution were shown distinctly in the fluorination of fluoroethylene; the smaller feed rate and the lower temperature resulted in a more vigorous reaction, giving a larger amount of hexa- and pentafluorinated ethanes, whereas the increased amount of sodium fluoride made the reaction milder, as was the case in the fluorination of methane.2) Since a very similar tendency was observed in the fluorination of 1, 1-difluoroethylene, only two typical runs are shown in the tables. The feed rate affected all the samples examined here similarly as had also been observed in the fluorination of ethylene and ethane.1)

No simple conclusion regarding the effect of other reaction conditions on the fluorination of chloroethylene and chlorotrifluoroethylene can be drawn, since our experiments gave very complicated results, with a wide variety of products, including chlorinated ones.

are given for these gaseous haloethylenes.

2) S. Nagase, K. Tanaka and H. Baba, ibid., 38,

834 (1965).

Table 1. Conditions for the fluorination

No. feed rate $\frac{\text{feed}}{\text{ml/min}}$ $\frac{\text{of}}{\text{feed}}$ $\frac{\text{passed}}{\text{mol}}$ $\frac{\text{used}}{\text{used}}$ $\frac{\text{remp.}}{\text{o}}$ $\frac{\text{Fluoroethylene}}{\text{No.}}$ $\frac{\text{Fluoroethylene}}{\text{mol}}$ $\frac{\text{Fluoroethylene}}{\text{No.}}$ $\frac{\text{Fluoroethylene}}{\text{o}}$ \frac	Run ^{a)}	Sample ^{b)}	Total amount	Electricity	NaF	
ml/min mol/min A. hr g °C Fluoroethylene 1 29 0.281 70 10 5-6 2 51 0.285 41 10 5-6 3 75 0.282 28 10 5-6 4 53 0.228 32 50 5-6 5 53 0.242 35 10 -10^{e^5} 6 53 0.278 39 10 $16-17$ Chloroethylene 1 20 0.208 79 10 $5-6$ 2 52 0.301 43 10 $5-6$ 3 72 0.293 31 10 $5-6$ 4 54 0.300 41 50 $5-6$ 5 53 0.302 42 10 -10^{e^5} 6 54 0.441 60 10 16 </td <td>No.</td> <td>feed rate</td> <td>sample</td> <td>passed</td> <td>used</td> <td></td>	No.	feed rate	sample	passed	used	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ml/min		A. hr	g	°C
2 51 0.285 41 10 5—6 3 75 0.282 28 10 5—6 4 53 0.228 32 50 5—6 5 53 0.242 35 10 —10e) 6 53 0.278 39 10 16—17 Chloroethylene 1 20 0.208 79 10 5—6 2 52 0.301 43 10 5—6 3 72 0.293 31 10 5—6 4 54 0.300 41 50 5—6 5 53 0.302 42 10 —10e) 6 54 0.441 60 10 16 1,1-Difluoroethylene 1 53 0.297 42 10 5—6 2 52 0.299 43 50 5—6 Chlorotrifluoroethylene 1 25 0.237 68 10 5—6 2 51 0.198 28 10 5—6 3 61 0.239 29 10 5—6 4 51 0.236 34 50 5—6 5 55 0.238 33 10 —10—9e) 6 51 0.236 34 10 15—16 Tetrafluoroethylene 1 20 0.217 82 10 5—6			Fluoro	ethylene		
3 75 0.282 28 10 5—6 4 53 0.228 32 50 5—6 5 53 0.242 35 10 —10e ⁵ 6 53 0.278 39 10 16—17 Chloroethylene 1 20 0.208 79 10 5—6 2 52 0.301 43 10 5—6 3 72 0.293 31 10 5—6 4 54 0.300 41 50 5—6 5 53 0.302 42 10 —10e ⁵ 6 54 0.441 60 10 16 1,1-Difluoroethylene 1 53 0.297 42 10 5—6 2 52 0.299 43 50 5—6 Chlorotrifluoroethylene 1 25 0.237 68 10 5—6 2 51 0.198 28 10 5—6 3 61 0.239 29 10 5—6 4 51 0.236 34 50 5—6 5 55 0.238 33 10 —10—9e ⁵ 6 51 0.236 34 10 15—16 Tetrafluoroethylene 1 20 0.217 82 10 5—6	1	29	0.281	70	10	5—6
4 53 0.228 32 50 5—6 5 53 0.242 35 10 —10e) 6 53 0.278 39 10 16—17 Chloroethylene 1 20 0.208 79 10 5—6 2 52 0.301 43 10 5—6 3 72 0.293 31 10 5—6 4 54 0.300 41 50 5—6 5 53 0.302 42 10 —10e) 6 54 0.441 60 10 16 1,1-Difluoroethylene 1 53 0.297 42 10 5—6 2 52 0.299 43 50 5—6 Chlorotrifluoroethylene 1 25 0.237 68 10 5—6 2 51 0.198 28 10 5—6 3 61 0.239 29 10 5—6 4 51 0.236 34 50 5—6 5 55 0.238 33 10 —10——9e) 6 51 0.236 34 10 15—16 Tetrafluoroethylene 1 20 0.217 82 10 5—6	2	51	0.285	41	10	5-6
5 53 0.242 35 10 -10e) 6 53 0.278 39 10 16—17 Chloroethylene 1 20 0.208 79 10 5—6 2 52 0.301 43 10 5—6 3 72 0.293 31 10 5—6 4 54 0.300 41 50 5—6 5 53 0.302 42 10 -10e) 6 54 0.441 60 10 16 1,1-Difluoroethylene 1 53 0.297 42 10 5—6 2 52 0.299 43 50 5—6 Chlorotrifluoroethylene 1 25 0.237 68 10 5—6 2 51 0.198 28 10 5—6 3 61 0.239 29 10 5—6 4 51 0.236 34 50 5—6 5 55 0.238 33 10 -10—-9e) 6 51 0.236 34 10 15—16 Tetrafluoroethylene 1 20 0.217 82 10 5—6	3	75	0.282	28	10	56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	53	0.228	32	50	56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	53	0.242	35	10	-10^{c}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	53	0.278	39	10	16—17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Chlore	ethylene		
3 72 0.293 31 10 5—6 4 54 0.300 41 50 5—6 5 53 0.302 42 10 —10° 6 54 0.441 60 10 16 1,1-Diffuoroethylene 1 53 0.297 42 10 5—6 2 52 0.299 43 50 5—6 Chlorotrifluoroethylene 1 25 0.237 68 10 5—6 2 51 0.198 28 10 5—6 3 61 0.239 29 10 5—6 4 51 0.236 34 50 5—6 5 55 0.238 33 10 —10——9° 6 51 0.236 34 10 15—16 Tetrafluoroethylene 1 20 0.217 82 10 5—6	1	20	0.208	79	10	5-6
4 54 0.300 41 50 5—6 5 53 0.302 42 10 —10°) 6 54 0.441 60 10 16 1,1-Diffuoroethylene 1 53 0.297 42 10 5—6 2 52 0.299 43 50 5—6 Chlorotrifluoroethylene 1 25 0.237 68 10 5—6 2 51 0.198 28 10 5—6 3 61 0.239 29 10 5—6 4 51 0.236 34 50 5—6 5 55 0.238 33 10 —10——9°) 6 51 0.236 34 10 15—16 Tetrafluoroethylene 1 20 0.217 82 10 5—6	2	52	0.301	43	10	5-6
5 53 0.302 42 10 -10°) 6 54 0.441 60 10 16 1,1-Diffuoroethylene 1 53 0.297 42 10 5-6 2 52 0.299 43 50 5-6 Chlorotrifluoroethylene 1 25 0.237 68 10 5-6 2 51 0.198 28 10 5-6 3 61 0.239 29 10 5-6 4 51 0.236 34 50 5-6 5 55 0.238 33 10 -109°) 6 51 0.236 34 10 15-16 Tetrafluoroethylene 1 20 0.217 82 10 5-6	3	72	0.293	31	10	56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	54	0.300	41	50	56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	53	0.302	42	10	-10c)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	54	0.441	60	10	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1, 1-Diflu	oroethylene		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	53	0.297	42	10	5-6
1 25 0.237 68 10 5—6 2 51 0.198 28 10 5—6 3 61 0.239 29 10 5—6 4 51 0.236 34 50 5—6 5 55 0.238 33 10 -10—-9° 6 51 0.236 34 10 15—16 Tetrafluoroethylene 1 20 0.217 82 10 5—6	2	52	0.299	43	50	56
2 51 0.198 28 10 5—6 3 61 0.239 29 10 5—6 4 51 0.236 34 50 5—6 5 55 0.238 33 10 -10—-9° 6 51 0.236 34 10 15—16 Tetrafluoroethylene 1 20 0.217 82 10 5—6		(Chlorotrifl	uoroethylen	e	
3 61 0.239 29 10 5—6 4 51 0.236 34 50 5—6 5 55 0.238 33 10 -10—-9° 6 51 0.236 34 10 15—16 Tetrafluoroethylene 1 20 0.217 82 10 5—6	1	25	0.237	68	10	5—6
4 51 0.236 34 50 5—6 5 55 0.238 33 10 -10—-9° 6 51 0.236 34 10 15—16 Tetrafluoroethylene 1 20 0.217 82 10 5—6	2	51	0.198	28	10	5—6
5 55 0.238 33 10 -109° 6 51 0.236 34 10 1516 Tetrafluoroethylene 1 20 0.217 82 10 56	3	61	0.239	29	10	5—6
6 51 0.236 34 10 15—16 Tetrafluoroethylene 1 20 0.217 82 10 5—6	4	51	0.236	34	50	56
Tetrafluoroethylene 1 20 0.217 82 10 56	5	55	0.238	33	10	-109°
1 20 0.217 82 10 5-6	6	51	0.236	34	10	1516
			Tetrafluo	roethylene		
2 44 0.225 36 10 5-6	1	20	0.217	82	10	56
	2	44	0.225	36	10	5 - 6

- a) All the experiments were carried out with the anodic current density of 2.2 A/dm².
- b) Gas volume is expressed at normal condition.
- c) The cell temperature was raised to 6°C at the end of the reaction.

The notable products from fluoroethylene were 1, 1 - difluoroethane and 1, 1, 1 - trifluoroethane. The mechanistic scheme proposed earlier for the formation of these fluoroethanes from ethylene1) could also apply in the present case; the addition of hydrogen fluoride to the double bond of fluoroethylene would yield the former, followed by the replacement of hydrogen by fluorine to yield the latter in this case.

^{*1 &}quot;Electrochemical Fluorination of Gases," Part of the Chemical Society of Japan, Tokyo, April, 1966.

S. Nagase, K. Tanaka, H. Baba and T. Abe,
This Bulletin, 39, 219 (1966).

Chloroethylene, and chlorotrifluoroethylene and

tetrafluoroethylene have been listed among halogeno-hydrocarbons in patents [Ref. 5 and Farbenfabriken Bayer A.-G., Brit. Pat., 740723 (1955)] but no details

TABLE 2. RESULTS IN THE FLUORINATION OF FLUOROETHYLEN	TABLE 2	RESILTS	IN THE	FILIORINATION	OF	FILIOROFTHYLEN
---	---------	---------	--------	---------------	----	----------------

Run No.	Total ^{a)} yield		Product ^{e)} composition, mol% ^{e,d)}										
110.	%	current eff. %	$\widehat{\mathrm{CF_3}\mathrm{CF_3}}$	CHF ₂ CF ₃	CH ₂ FCF ₃	CHF ₂ CHF ₂	CH ₃ CF ₃	$\mathrm{CH_3CHF_2}$	CF ₄	CHF ₃	n-C ₄ F ₁₀		
1	78.9	52.8	43.9	18.5	20.0	2.8	7.3	_	1.7	3.9	1.9		
2	66.5	62.3	16.5	29.7	14.2	15.8	14.9	4.5	1.6	2.5	0.3		
3	52.5	59.5	13.2	15.7	10.0	11.8	33.6	9.9	1.5	4.3			
4	51.3	46.2	19.1	15.7	13.3	24.6	9.2	7.0	1.5	9.3	0.3		
5	42.0	45.0	36.3	28.6	5.6	8.0	5.6	5.5	0.7	9.2	0.5		
6	60.2	58.7	25.0	13.5	13.4	15.1	13.6	9.3	1.2	2.4	1.5		

- a) Yields (mol%) in this and in the following tables were calculated on the basis of the amount of the sample fed.
- b) The calculation of the current efficiency was made under the similar assumption as before.¹⁾ A few examples of the assumed equations for the fluorination of fluoroethylene were as follows.
 - $C_2H_3F+8F \rightarrow CF_3CF_3+3HF$ (1) $C_2H_3F+H+F \rightarrow CH_3CHF_2$ (2) $C_2H_3F+10F \rightarrow 2CF_4+3HF$ (3) Total current efficiency shown is the sum total of the current efficiency for each component. The current efficiency was calculated in a similar manner for the fluorination of 1,1-difluoroethylene and tetrafluoroethylene.
- c) Except n-C₄F₁₀, these were identical compounds with those obtained in the fluorination of ethylene. (The amount of CHF₃ formed was negligibly small in the case of the ethylene.)¹³
- d) A small amount of unidentified product (<0.5 g) was found in the rectification residue of the fluorinated products from fluoroethylene and other samples.

Table 3. Results in the fluorination of chloroethylene

Run No.				Product composition, mol%									
140.	%	eff. %	$\widehat{\mathrm{CF_3}\widehat{\mathrm{CF_3}}}$	CHF ₂ CF ₃	CClF ₂ CF ₃ b)	CH ₂ FCF ₃	CHF ₂ CHF ₂	CHF ₂ CClF ₂ b)	CH ₂ FCClF ₂ e)				
1	65.9	36.4	39.4	6.9	14.2	2.6	1.1	7.7	4.2				
2	48.7	59.2	9.6	5.4	18.0	5.5	_	22.6	14.2				
3	18.9	31.1	9.7	10.7	15.2	5.6	1.0	15.0	11.5				
4	30.0	35.7	11.4	1.8	18.9	1.3	_	17.2	28.9				
5	35.3	46.3	8.0	11.5	12.4	8.8	4.1	25.2	6.0				
6	65.7	75.4	5.5	4.6	9.2	5.9	4.6	24.4	26.7				

Run			, 0							
No.	$\widehat{\mathrm{CH_3CF_3}}$	CF ₄	CHF ₃	CClF ₃ c)	CHClF ₂ c)	CCl ₂ F ₂ c)	CCIF ₂ CCIF ₂ b)	CHClFCClF ₂ d)	CCl ₂ FCClF ₂ b)	n-C ₄ F ₁₀ b)
1	0.6	7.1	1.0	7.5	0.7	_	4.6	0.9	0.9	0.6
2	3.1	0.7	4.2	2.0	1.4	0.8	12.5			_
3	4.9	1.1	8.3	3.1	3.4		10.5	_		_
4	` 2.6	3.1	2.3	2.1	2.5	_	3.3	3.8	0.8	_
5	5.7	0.9	4.9	1.6	0.8	0.9	9.2			
6	1.9	1.0	2.7	1.2	0.8	1.3	8.2	2.0	_	_

a) A few examples of the assumed equations for calculation of the current efficiency:

 $C_2H_3Cl + 10F \rightarrow CF_3CF_3 + ClF + 3HF \quad (1) \qquad C_2H_3Cl + Cl + 7F \rightarrow CClF_2CClF_2 + 3HF \quad (3)$

 $C_2H_3Cl + 8F \rightarrow CF_3CClF_2 + 3HF \qquad (2) \qquad C_2H_3Cl + H + 5F \rightarrow CH_3CF_3 + ClF + HF \quad (4)$

Current efficiency was calculated in a similar manner for the fluorination of chlorotrifluoroethylene. b), c), d), e) Infrared spectra of these compounds, agree with those listed in the following references respectively: "Infrared Spectral Data," American Petroleum Institute, Research Project 44, Carnegie Institute Technology, 1959, Serial number, 1312, 1338, 1038, 1036 and 1370, E. K. Plyer and W. S. Benedict, J. Research Natl. Bur. Standards, 47, 202 (1951); J. D. Park, W. R. Lycan and J. R. Lacher, J. Am. Chem. Soc., 73, 711 (1951); and that of an authentic specimen.

The rather large amount of 1, 1, 1-trifluoroethane formed from 1, 1-difluoroethylene indicates the very easy addition of hydrogen fluoride to 1, 1difluorovinyl compounds;³⁾ the other products were mainly formed by the progressive fluorination of the trifluoroethane.

Chlorination reaction took place to some extent

³⁾ A. L. Henne and J. B. Hinkamp, J. Am. Chem. Soc., 67, 1197 (1945).

Table 4. Results in the fluorination of 1, 1-difluoroethylene

Run No.	Total	Total current eff.			Product co	mposition, n	nol%		
1101	%	%		$\mathrm{CHF}_2\mathrm{CF}_3$	CH ₂ FCF ₃	CH ₃ CF ₃	CF ₄	CHF_3	n - $C_4\widetilde{F}_{10}$
1	66.3	33.9	23.4	4.8	15.3	46.9	8.9	0.3	0.4
2	65.0	23.3	7.4	6.7	20.0	61.3	3.5	0.9	0.2

Table 5. Results in the fluorination of chlorotrifluoroethylene

Run Total Total No. vield current et			Product composition, mol%									
No.	%	current eff.		$CClF_2CF_3$	CF ₄	CHF ₃	CCIF ₃	$\widehat{\mathrm{CCl_2F_2}}$	CClF ₂ CClF ₂	CHF ₂ CClF ₂	n-C ₄ F ₁₀	
1	71.0	17.7	22.0	31.9	18.6	2.8	5.9	_	16.7	_	2.1	
2	69.5	29.6	15.3	41.1	17.2	1.4	6.6	3.6	13.6	0.8	0.4	
3	70.2	32.0	8.0	53.3	8.9	0.5	9.8	3.8	13.4	1.6	0.7	
4	59.1	20.0	1.5	57.6	9.2	0.5	18.1	2.2	9.5	1.3	0.1	
5	48.9	21.1	8.4	51.7	19.2	0.6	5.1	3.5	10.6	0.6	0.3	
6	67.6	25.8	6.5	66.3	4.1	0.2	6.0	1.6	13.4	0.8	1.1	

Table 6. Results in the fluorination of tetrafluoroethylene

Run No.	Total vield	Total current eff.		Product	composition, me	ol%	
No.	%	%	$\widehat{\mathrm{CF_3}\mathrm{CF_3}}$	CHF ₂ CF ₃	CF ₄	CHF ₃	n - C_4F_{10}
1	86.1	12.2	73.5	2.2	20.4	0.4	3.5
2	80.1	26.9	62.2	4.5	29.8	1.3	2.2

during fluorination in chloroethylene, which gave various products, including di- and trichlorides. Dichlorinated products were obtained even in the fluorination of chlorotrifluoroethylene. Such chlorination has been reported in the electrochemical fluorination of a gaseous halomethane⁴⁾ and of liquid chlorohydrocarbons.⁵⁾ The chlorination might be due either to the formation of chlorine fluoride, known to be a powerful chlorinating agent, or to the liberation of free chlorine.

The interesting products from chlorotrifluoroethylene and tetrafluoroethylene were small amounts of hydrogen-containing compounds. This hydrogen may have been derived via the addition of hydrogen fluoride to the double bond. Under the present reaction conditions, such addition may have occurred to some extent even in these highly halogenated ethylenes.

A small amount of a tarry polymeric material was found in the electrolytic cell after the fluorination of each sample.

Experimental

Materials. Fluoroethylene (99.9%), chloroethylene (99.9% min), and 1, 1-difluoroethylene (99.0% min)

were purchased from the Matheson Co. Chlorotrifluoroethylene was prepared by the dechlorination of 1, 1, 2-trichlorotrifluoroethane with zinc dust in ethanol.6) Tetrafluoroethylene was synthesized by the pyrolysis of chlorodifluoromethane.⁷⁾ The purity of these two olefins, rectified so as to be better than 99.8%, was confirmed through gas chromatographic analysis. Hydrogen fluoride rated as better than 99% pure was furnished by the Daikin Industries Co.; it was used as has frequently been described.

Apparatus and Procedure. The electrochemical fluorination apparatus used was the same as that described in a preceding paper.4) The fluorination procedure, which has previously been described in detail,1) was essentially as follows: a known amount of the sample gas was introduced continuously into 1 l of hydrogen fluoride, containing sodium fluoride dissolved as a conductivity additive, while the current was conducted through; the products were freed from hydrogen fluoride and oxygen difluoride, and condensed. For the identification and the analysis of the products, lowtemperature rectification, with molecular weight measurements, and then gas chromatography (column: silica gel, carrier: helium) and infrared spectrum mesuurements were used, as has been described previously.13

S. Nagase, H. Baba and T. Abe, This Bulletin, **39**, 2304 (1966).

⁵⁾ British Thomson-Houston Co., Ltd., Brit. Pat., 668609 (1952).

E. G. Locke, W. R. Brode and A. L. Henne, J. Am. Chem. Soc., 56, 1726 (1934).
 J. D. Park, A. F. Benning, F. B. Downing, J. F. Laucius and R. C. McHarness, Ind. Eng. Chem., 39, 254 (1947). 354 (1947).